

Title
Long Title
Credits 5
NFQ Level
Module Autho

Practical Cryptography Practical Cryptography 5 Expert Dr.Hazel Murray

Module Description:

Cryptography is an essential part of building secure and robust information systems and applications. In this module students will gain a hands-on understanding of practical cryptographic applications and their correct implementations in information systems. This will include an understanding of symmetric and asymmetric cryptography and hash functions. This module was developed under the Cyber Skills HCI Pillar 3 Project. Please refer to consortium agreement for ownership.

Learning Outcomes

On successful completion of this module the learner will be able to:

- LO1 Critically evaluate a range of real-world cryptographic algorithms with respect to their security and efficiency.
- LO2 Appraise the application of cryptographic algorithms as solutions in real-world systems.
- LO3 Design and deploy cryptography as an imbedded feature in information communication and access procedures.
- LO4 Assess the pitfalls and limitations in security software and develop an ability to use available documentation and best practice guidelines to overcome these barriers.
- LO5 Communicate cryptographic analysis and design outcomes to a wider audience of peers through presentation to a professional standard.

Indicative Content

Introduction to cryptography

What are the key security objectives? What are the attacks? What protections do we expect? CIA triad. Introduce the key sources for documentation (NIST, OWASP, RFCs).

Symmetric cryptography

Types of symmetric cryptography; stream ciphers, block ciphers. Algorithms in use: 3DES, AES modes, Blowfish, etc. Applications of symmetric cryptography: Secure payment, file encryption, message encryption, authentication (Kerberos).

Asymmetric cryptography

How it works: Basic Number theory concepts. Algorithms in use: Diffie Hellman, RSA & Elliptic Curve Cryptography. Applications: Key exchange, digital signatures, certificates.

Hashing

How it works: hash functions. Algorithms in use: MD5, RIPEMD, Whirlpool, SHA. Applications: Message Digest and Password Verification. **Protocols**

Applications of symmetric and Asymmetric cryptography including key management. Correct implementation of TLS, OAuth (OICD), WPA 2.0.

Course Work					
Assessment Type	Assessment Description		Outcome Addressed	% of Total	Assessment Date
Presentation	Learners propose a plan to secure an application u techniques. The criteria used to select an appropria parameters are documented and presented to a profession various methods which may include a short written pro- presentation.	sing cryptographic ate algorithm and onal standard using oposal and an oral	1,2,5	20.0	Week 6
Project	Learners will develop a full implementation of a secure and with embedded security. The relevant cryptography mu secure manner using best-practice implementations algorithms. Learners will communicate the limitation deployment features in a detailed technical report. communicate the security features and performance of techniques used to a diverse audience of technical professionals using various methods which may include an blog post, a short presentation or a paper	d robust application ist be applied in a s and up-to-date a, restrictions and Learners will also the cryptographic and non-technical academic poster, a	1,2,3,4,5	80.0	Sem End
Accoccmont Bro	akdown	0/			

Assessment Breakdown	%
Coursework	100
Re-Assessment Requirement	

Coursework

This module is reassessed solely on the basis of re-submitted coursework. There is no repeat written examination.

Workload - Full Time

Workload	Workload Description	Hours	Frequency	Average	Weekly
Туре				Leaner W	orkload

Suilding Ireland's cyber security skills

Lecture	lectures covering the theoretical concepts underpinning the learning outcomes	2.0	Every Week	2.00
Lab	Lab to support the learning outcomes.	2.0	Every Week	2.00
Independent &	Independent learning by the student.	3.0	Every Week	3.00
Directed Learning (Non-contact)				
		Total Hours		7
		Total Weekly Lea	arner Workload	7
		Total Weekly Co	ntact Hours	4
Workload – Part	Time			
Workload	Workload Description	Hours	Frequency	Average Weekly
Type		2.0		Leaner Workload
Lecture	Lectures covering the theoretical concepts underpinning the learning outcomes.	2.0	Every week	2.00
Lab	Lab to support the learning outcomes.	2.0	Every Week	2.00
Independent & Directed Learning (Non-contact)	Independent learning by the student.	3.0	Every Week	3.00
		Total Hours		7
		Total Weekly Lee	arner Workload	7
		Total Weekly Co	ntact Hours	4
Recommended	Book Resources			

Niels Ferguson, Bruce Schneier, Tadayoshi Kohno 2011, Cryptography engineering: design principles and practical applications, Wiley ٠